首页> 外文OA文献 >A graphical method for practical and informative identifiability analyses of physiological models: A case study of insulin kinetics and sensitivity
【2h】

A graphical method for practical and informative identifiability analyses of physiological models: A case study of insulin kinetics and sensitivity

机译:一种实用且有益的生理模型识别性分析的图形方法:以胰岛素动力学和敏感性为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Derivative based a-priori structural identifiability analyses of mathematical models can offer valuable insight into the identifiability of model parameters. However, these analyses are only capable of a binary confirmation of the mathematical distinction of parameters and a positive outcome can begin to lose relevance when measurement error is introduced. This article presents an integral based method that allows the observation of the identifiability of models with two-parameters in the presence of assay error. Methods: The method measures the distinction of the integral formulations of the parameter coefficients at the proposed sampling times. It can thus predict the susceptibility of the parameters to the effects of measurement error. The method is tested in-silico with Monte Carlo analyses of a number of insulin sensitivity test applications. Results: The method successfully captured the analogous nature of identifiability observed in Monte Carlo analyses of a number of cases including protocol alterations, parameter changes and differences in participant behaviour. However, due to the numerical nature of the analyses, prediction was not perfect in all cases. Conclusions: Thus although the current method has valuable and significant capabilities in terms of study or test protocol design, additional developments would further strengthen the predictive capability of the method. Finally, the method captures the experimental reality that sampling error and timing can negate assumed parameter identifiability and that identifiability is a continuous rather than discrete phenomenon.
机译:背景:数学模型的基于先验的先验结构可识别性分析可以为模型参数的可识别性提供有价值的见解。但是,这些分析仅能对参数的数学区别进行二进制确认,并且当引入测量误差时,肯定的结果会开始失去相关性。本文介绍了一种基于积分的方法,该方法允许在存在分析误差的情况下观察具有两个参数的模型的可识别性。方法:该方法在建议的采样时间测量参数系数的积分公式的区别。因此,它可以预测参数对测量误差影响的敏感性。该方法在计算机上通过许多胰岛素敏感性测试应用的蒙特卡洛分析进行了计算机测试。结果:该方法成功地捕获了在蒙特卡洛分析中观察到的可识别性的相似性质,其中包括案例更改,参数更改和参与者行为差异等多种情况。但是,由于分析的数值性质,预测并非在所有情况下都是完美的。结论:因此,尽管当前的方法在研究或测试方案设计方面具有有价值的重要功能,但其他的开发将进一步加强该方法的预测能力。最后,该方法捕获了以下实验现实:采样误差和时序可以否定假定的参数可识别性,并且可识别性是连续的而不是离散的现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号